shh.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Kuster, Roman P
    et al.
    Grooten, Wilhelmus J A
    Baumgartner, Daniel
    Blom, Victoria
    Hagströmer, Maria
    Sophiahemmet Högskola.
    Ekblom, Örjan
    Detecting Prolonged Sitting Bouts with the ActiGraph GT3X2020Ingår i: Scandinavian Journal of Medicine and Science in Sports, ISSN 0905-7188, E-ISSN 1600-0838, Vol. 30, nr 3, s. 572-582Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The ActiGraph has a high ability to measure physical activity, however, it lacks an accurate posture classification to measure sedentary behaviour. The aim of the present study was to develop an ActiGraph (waist-worn, 30Hz) posture classification to detect prolonged sitting bouts, and to compare the classification to proprietary ActiGraph data. The activPAL, a highly valid posture classification device, served as reference criterion.1 Both sensors were worn by 38 office workers over a median duration of 9 days. An automated feature selection extracted the relevant signal information for a minute based posture classification. The machine-learning algorithm with optimal feature number to predict the time in prolonged sitting bouts (≥5 and ≥10 minutes) was searched and compared to the activPAL using Bland-Altman statistics. The comparison included optimised and frequently used cut-points (100 and 150 counts-per-minute (cpm), with and without low-frequency-extension (LFE) filtering). The new algorithm predicted the time in prolonged sitting bouts most accurate (bias ≤7 minutes/day). Of all proprietary ActiGraph methods, only 150 cpm without LFE predicted the time in prolonged sitting bouts non-significantly different from the activPAL (bias ≤18 minutes/day). However, the frequently used 100 cpm with LFE accurately predicted total sitting time (bias ≤7 minutes/day). To study the health effects of ActiGraph measured prolonged sitting, we recommend using the new algorithm. In case a cut-point is used, we recommend 150 cpm without LFE to measure prolonged sitting, and 100 cpm with LFE to measure total sitting time. However, both cpm cut-points are not recommended for a detailed bout analysis.

1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf